The Stability of Pseudospectral - Chebyshev Methods
نویسندگان
چکیده
The stability of pseudospectral-Chebyshev methods is demonstrated for parabolic and hyperbolic problems with variable coefficients. The choice of collocation points is discussed. Numerical examples are given for the case of variable coefficient hyperbolic equations.
منابع مشابه
A note on stability of pseudospectral methods for wave propagation
In this paper we deal with the e/ects on stability of subtle di/erences in formulations of pseudospectral methods for solution of the acoustic wave equation. We suppose that spatial derivatives are approximated by Chebyshev pseudospectral discretizations. Through reformulation of the equations as 4rst order hyperbolic systems any appropriate ordinary di/erential equation solver can be used to i...
متن کاملAn improved pseudospectral approximation of generalized Burger-Huxley and Fitzhugh-Nagumo equations
In this research paper, an improved Chebyshev-Gauss-Lobatto pseudospectral approximation of nonlinear Burger-Huxley and Fitzhugh- Nagumo equations have been presented. The method employs chebyshev Gauss-Labatto points in time and space to obtain spectral accuracy. The mapping has introduced and transformed the initial-boundary value non-homogeneous problem to homogeneous problem. The main probl...
متن کاملChebyshev pseudospectral collocation for parabolic problems with non- constant coefficients
This paper analyses a Chebyshev pseudospectral collocation semidiscrete (continuous in time) discretization of a variable coefficient parabolic problem. Optimal stability and convergence estimates are given. The analysis is based on an approximation property concerning the GaussLobatto-Chebyshev interpolation operator.
متن کاملChebyshev pseudospectral method for wave equation with absorbing boundary conditions that does not use a first order hyperbolic system
The analysis and solution of wave equations with absorbing boundary conditions by using a related first order hyperbolic system has become increasingly popular in recent years. At variance with several methods which rely on this transformation, we propose an alternative method in which such hyperbolic system is not used. The method consists of approximation of spatial derivatives by the Chebysh...
متن کاملChebyshev rational spectral and pseudospectral methods on a semi-in5nite interval
A weighted orthogonal system on the half-line based on the Chebyshev rational functions is introduced. Basic results on Chebyshev rational approximations of several orthogonal projections and interpolations are established. To illustrate the potential of the Chebyshev rational spectral method, a model problem is considered both theoretically and numerically: error estimates for the Chebyshev ra...
متن کامل